
OpenGlob POS Engine v2: Universal Offline-First Synchronization

Engine

OpenGlob Architecture Board

February 7, 2026

Abstract

This document defines the OpenGlob POS Engine v2 (Persistent Offline Synchronization)
protocol as the mandatory technical standard for all future OpenGlob web applications, includ-
ing data-heavy, stateful systems that exceed simple task-list complexity. The protocol formalizes
an architectural shift from synchronous request–response workflows to an Asynchronous Persist–
Sync model: all user actions are first committed to a local, durable queue and applied to local
state immediately; network synchronization occurs in a background drain process with strict
idempotency guarantees.

The primary objectives are (i) zero UI blocking (0ms perceived latency under typical render-
ing constraints), (ii) universal action schema across all OpenGlob products, and (iii) duplicate-
free, retry-safe synchronization under network faults and backend timeouts. This standard
explicitly corrects prior architectural flaws in universal state management and idempotency.

1 Scope and Non-Negotiable Requirements

Scope. This standard applies to all OpenGlob web applications that mutate user-visible state
(Create/Update/Delete) and synchronize with any remote backend (Flask, Google Apps Script, or
equivalent).

Hard requirements.

• Every user action that mutates state MUST (a) update local application state and repaint
the UI immediately, and (b) be serialized into a durable local persistence queue.

• All sync requests MUST be idempotent. Retries MUST NOT create duplicates.

• The client-generated identifier (tempId) MUST be transmitted to the server and honored as
the canonical identifier for the event (and, where applicable, the resource primary key).

• The protocol MUST be universal: the queue schema cannot be task-specific.

1

2 Abstract Core Philosophy: From Synchronous Request–Response
to Asynchronous Persist–Sync

2.1 Problem Statement

Traditional web applications couple user interaction to server execution: the UI blocks (spin-
ner/disabled controls) while the network round-trip and server-side write completes. This coupling
is fragile under high latency and catastrophic under burst concurrency.

In Google Apps Script (GAS) backends, burst traffic increases simultaneous executions and in-
creases time-to-response. Operationally, this pattern collapses around ˜30 simultaneous writers
when requests arrive at the same moment and executions elongate, exhausting concurrency limits.

2.2 Solution Statement

POS Engine v2 decouples User Interaction from Server Execution. Every mutation is (1) applied
optimistically to local state and rendered immediately, and (2) written to a durable local FIFO
queue (localStorage) that is drained by a background worker.

2.3 Key Metrics (Operational Targets)

• 0ms perceived latency independent of network speed: user-visible updates occur on the
local event loop and paint cycle (typical first paint ˜16ms at 60Hz).

• 10x backend concurrency capacity: shifting from direct synchronous writes (˜30 concur-
rent users) to queued background sync (˜300+ sustained users) by smoothing burst traffic
into sequential/background drains.

3 Architecture: Dual-Branch Execution Model (Mandatory)

Every Create/Update/Delete action triggers two branches in the same user event.

Branch A (Optimistic UI). Mutate local state immediately and re-render the DOM.

Branch B (Persistence Queue). Serialize the action into a durable FIFO queue in local

Storageusing the universal schema defined in Section 4.1.

2

User Input
(Create/Update/Delete)

Dual-Branch
Execution Trigger

Branch A:
Optimistic State Mutation
+ UI Render (Instant)

Branch B:
Local Persistence

(FIFO Queue in localStorage)

Background Worker
(Loop / Timer / Online Event)

Idempotency Check
(Client Key + Server Log)

REST API Call
POST /api/sync

200/409?

Queue Cleanup
(Dequeue by tempId)

Retry Path
(500 / Network Error)

Backoff + Wait for Online

Su
cce

ss

Retry

Figure 1: POS Engine v2 Dual-Branch Execution Model with strict idempotency and retry-safe
queue drain.

3.1 Protocol Flowchart (TikZ)

4 Technical Specifications (Corrected Logic)

4.1 Universal Queue Schema

The queue item is an event envelope that must support any OpenGlob product (tasks, inventory,
users, orders, etc.). It must be stable across versions and suitable for backend replay.

Listing 1: Universal POS queue schema (event envelope).

1 {

2 "tempId": "uuid_v4_client_generated",

3 "action": "CREATE" | "UPDATE_STATUS" | "SOFT_DELETE",

4 "resource": "Task" | "InventoryItem" | "User",

5 "payload": { "...": "..." },

6 "timestamp": 1707300000000

7 }

Normative semantics.

• tempId is a client-generated UUIDv4 and is the idempotency key for the event. It is stable
across retries and across page reloads.

• timestamp is client epoch-millis at time of enqueue.

• resource and action define the meaning of payload. The protocol is agnostic to domain-
specific fields.

4.2 Corrected Sync Engine: processQueue (Strict Idempotency)

Crucial correction: the client MUST send tempId to the server and the server MUST use it for
idempotency. A retry is not a new write.

Listing 2: Corrected POS v2 queue drain with strict idempotency.

1 async function processQueue () {

2 const item = TaskQueue.peek();

3

3 if (!item) return;

4

5 try {

6 // Idempotency: the server uses ’tempId ’ as the permanent primary key

7 // or checks it against a processed -events log.

8 const res = await fetch(’/api/sync’, {

9 method: ’POST’,

10 headers: {

11 ’Content -Type’: ’application/json’,

12 ’X-OpenGlob -Idempotency -Key’: item.tempId

13 },

14 body: JSON.stringify(item)

15 });

16

17 // 409 Conflict means "Already Processed" -> Treat as Success

18 if (res.ok || res.status === 409) {

19 TaskQueue.remove(item.tempId);

20 processQueue (); // Recursive drain

21 } else if (res.status >= 500) {

22 setTimeout(processQueue , 5000); // Server busy , backoff

23 }

24 } catch (networkError) {

25 // Wait for ’online ’ event

26 }

27 }

4.3 Correcting the Historical Duplicate Bug (Root Cause)

Prior architecture produced duplicates under timeouts due to a two-part failure mode.

Flaw A: Amnesiac backend. A retry was treated as a brand new request. A typical failure
pattern is server-side UUID generation on each request (e.g., uuid.uuid4()) which guarantees
duplicates on retry.

Flaw B: Blind persistence layer. A write target (e.g., Google Sheets appendRow) accepted
every request without checking for prior processing.

Ghost-write scenario. If the backend write completes but the response times out (e.g., GAS
takes 11s, caller times out at 10s), the client retries; the backend generates a new ID and persists
again. POS Engine v2 eliminates this class of defects by requiring that the client-supplied tempId

is stable and is checked server-side before any write.

4

Metric Current App (Synchronous) POS v2 (Persist–Sync)

Max concurrent users
(burst writes)

˜30 users ˜300+ users

Daily active users
(DAU) capacity

˜500 DAU ˜5,000+ DAU

Primary bottleneck Simultaneous executions; the
31st burst request fails

Daily quotas (e.g., total
fetches/day); bursts are
smoothed

Duplicate risk under
retry

High (new IDs on retry) Eliminated (idempotency key en-
forced)

Table 1: Operational comparison: synchronous coupling vs. POS Engine v2 queue smoothing.

Direct Sync POS v2
0

500

1,000

1,500
1,500

16

L
at
en

cy
(m

s)

3G Network (1500ms RTT): Perceived UI Latency

Figure 2: Direct sync blocks UI on network RTT; POS v2 commits locally and paints immediately
(˜16ms frame).

5 Performance Comparison (Hard Data, pgfplots)

5.1 Capacity and Reliability Summary Table

5.2 Chart 1: User Perceived Latency (Lower is Better)

5.3 Chart 2: Backend Concurrency Capacity (Higher is Better)

5.4 Chart 3: Data Reliability (Higher is Better)

6 Integration Contract (Backend Requirements)

This section is normative. Backends that do not meet these requirements are non-compliant with
OpenGlob POS Engine v2.

5

Direct Sync POS v2
0

100

200

300

30

300

S
u
st
ai
n
ed

co
n
cu

rr
en
t
u
se
rs

GAS Burst Limit: Concurrency Capacity

Figure 3: Queue smoothing reduces peak simultaneous executions by shifting writes to background
drains.

Direct Sync POS v2
0

20

40

60

80

100

60

100

R
el
ia
b
il
it
y
(%

)

Tab Closed Immediately After Action: Data Reliability

Figure 4: POS v2 persists events locally before network attempts; actions survive tab closure and
sync on next visit.

6.1 Canonical Client ID Rule

The server MUST NOT generate a new UUID for an event that already has a tempId.
The server must accept the client-provided tempId as the canonical identifier.

6.2 Idempotency Rule

Before writing any mutation, the backend MUST perform an idempotency check:

• If tempId has not been processed: apply the mutation and mark tempId as processed.

• If tempId has already been processed: return 200 OK or 409 Conflict. Both are interpreted
by the client as success and trigger dequeue.

6

6.3 Minimal Backend Interface

The POS v2 client requires a single endpoint:

• POST /api/sync: accepts the universal event envelope and returns one of:

– 200 OK: processed successfully,

– 409 Conflict: already processed (idempotent replay),

– 5xx: retry with backoff.

7 Standardized State Management (Universal, Application-Agnostic)

7.1 Why “Universal State” Is Required

A queue without a universal state model results in inconsistent UI, divergent caches, and untraceable
edge cases. POS Engine v2 requires that every UI mutation is derived from the same action envelope
that is persisted and later synced.

7.2 Normative Rule: Actions Are the Source of Truth

• UI state transitions MUST be applied by reducing an action into local state (i.e., a determin-
istic state transition function).

• The same action envelope MUST be the unit of persistence and the unit of synchronization.

7.3 Recommended Determinism Constraints

• Action handlers should be pure with respect to state (no hidden network reads).

• Any nondeterminism (e.g., timestamps) must be captured in the action envelope at enqueue
time.

8 Operational Notes and Failure Modes

8.1 Backoff and Online Recovery

When network calls fail, the client must wait for the browser online event or a scheduled backoff
before re-attempting processQueue. Repeated failures must not block UI.

8.2 Crash/Reload Safety

The queue MUST be loaded from localStorageon application startup and drained automatically.
This ensures that actions taken immediately before a crash or tab close are eventually synchronized.

7

9 Compliance Checklist

An OpenGlob application is POS v2-compliant only if all of the following are true:

1. Every user action writes an action envelope to a durable FIFO queue before any network
attempt.

2. Every user action updates local state and re-renders UI without awaiting the server.

3. Every sync request includes tempId as an idempotency key.

4. The backend enforces idempotency based on tempId and returns 200 or 409 for replays.

8

	Scope and Non-Negotiable Requirements
	Abstract Core Philosophy: From Synchronous Request–Response to Asynchronous Persist–Sync
	Problem Statement
	Solution Statement
	Key Metrics (Operational Targets)

	Architecture: Dual-Branch Execution Model (Mandatory)
	Protocol Flowchart (TikZ)

	Technical Specifications (Corrected Logic)
	Universal Queue Schema
	Corrected Sync Engine: processQueue (Strict Idempotency)
	Correcting the Historical Duplicate Bug (Root Cause)

	Performance Comparison (Hard Data, pgfplots)
	Capacity and Reliability Summary Table
	Chart 1: User Perceived Latency (Lower is Better)
	Chart 2: Backend Concurrency Capacity (Higher is Better)
	Chart 3: Data Reliability (Higher is Better)

	Integration Contract (Backend Requirements)
	Canonical Client ID Rule
	Idempotency Rule
	Minimal Backend Interface

	Standardized State Management (Universal, Application-Agnostic)
	Why ``Universal State'' Is Required
	Normative Rule: Actions Are the Source of Truth
	Recommended Determinism Constraints

	Operational Notes and Failure Modes
	Backoff and Online Recovery
	Crash/Reload Safety

	Compliance Checklist

